Establishing Antibacterial Multilayer Films on the Surface of Direct Metal Laser Sintered Titanium Primed with Phase-Transited Lysozyme

نویسندگان

  • Binbin Guan
  • Haorong Wang
  • Ruiqing Xu
  • Guoying Zheng
  • Jie Yang
  • Zihao Liu
  • Man Cao
  • Mingyao Wu
  • Jinhua Song
  • Neng Li
  • Ting Li
  • Qing Cai
  • Xiaoping Yang
  • Yanqiu Li
  • Xu Zhang
چکیده

Direct metal laser sintering is a technology that allows the fabrication of titanium (Ti) implants with a functional gradation of porosity and surface roughness according to three-dimensional (3D) computer data. The surface roughness of direct metal laser sintered titanium (DMLS-Ti) implants may provide abundant binding sites for bacteria. Bacterial colonization and subsequent biofilm formation can cause unsatisfactory cell adhesion and implant-related infections. To prevent such infections, a novel phase-transited lysozyme (PTL) was utilized as an initial functional layer to simply and effectively prime DMLS-Ti surfaces for subsequent coating with antibacterial multilayers. The purpose of the present study was to establish a surface with dual biological functionality. The minocycline-loaded polyelectrolyte multilayers of hyaluronic acid (HA) and chitosan (CS) formed via a layer-by-layer (LbL) self-assembly technique on PTL-functionalized DMLS-Ti were designed to inhibit pathogenic microbial infections while allowing the DMLS-Ti itself and the modified coatings to retain acceptable biocompatibility. The experimental results indicate that the DMLS-Ti and the hydrogel treated surfaces can inhibit early bacterial adhesion while completely preserving osteoblast functions. This design is expected to gain considerable interest in the medical field and to have good potential for applications in multifunctional DMLS-Ti implants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Titanium Surface Priming with Phase-Transited Lysozyme to Establish a Silver Nanoparticle-Loaded Chitosan/Hyaluronic Acid Antibacterial Multilayer via Layer-by-Layer Self-Assembly

OBJECTIVES The formation of biofilm around implants, which is induced by immediate bacterial colonization after installation, is the primary cause of post-operation infection. Initial surface modification is usually required to incorporate antibacterial agents on titanium (Ti) surfaces to inhibit biofilm formation. However, simple and effective priming methods are still lacking for the developm...

متن کامل

Inhibition of Staphylococcus aureus growth in fresh calf minced meat using low density Polyethylene films package promoted by titanium dioxide and zinc oxide nanoparticles

Antibacterial properties of TiO2, ZnO as well as mixed TiO2-ZnO nanoparticles coated low density polyethylene films on Staphylococcus aureus PTCC1112 were investigated. Bactericidal efficiency of 0.5, 1 and 2 Wt% for TiO2 and ZnO nanoparticles and also 1 Wt% mixed TiO2-ZnO nanoparticles with TiO2:ZnO ratios of 25:75, 50:50 and 75:25 were tested under UV and fluorescent lights exposure at two di...

متن کامل

Rapid Prototyping Technologies in Prosthetic Dentistry

Background: Recently, rapid prototyping technology is the future of quick and direct production. This technology found applications with metal framework of fixed partial dentures, framework of removable partial dentures, facial prostheses and titanium implants in prosthetic dentistry. Laser beam sintered the selected areas on the alloy powders and the restoration is produced layer by layer at s...

متن کامل

Effects of Solvent on the Structure and Properties of Titanium Dioxide Nanoparticles and Their Antibacterial Activity

Titanium dioxide is semiconductor metal oxide having many applications in photocatalytic activities, cosmetics and in the food industry. It exists in three major crystalline forms: anatase, rutile and brookite. The solvents play a major role in the synthesis, stability and morphology of the metal oxide nanoparticles. It affects both the phase and particle size of metal oxide. T...

متن کامل

Characterization and Corrosion Behavior of Hydroxyapatite- Coated Titanium Substrates Prepared Through Laser Induced Liquid Deposition Technique

Titanium and titanium alloys are often used in orthopedic surgery and dentistry because of their especial characteristics such as biocompatibility, mechanical properties, and corrosion resistance. However, their bio- inertness is the most serious drawback for biomedical applications. Therefore, a bioactive coating like hydroxyapatite (HA) is coated on their surface. In this regard, in the prese...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016